On period maps that are open embeddings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTIPLICATION MODULES THAT ARE FINITELY GENERATED

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...

متن کامل

Maps that are roots of power series

We introduce a class of polynomial maps that we call polynomial roots of powerseries, and show that automorphisms with this property generate the automorphism group in any dimension. In particular we determine generically which polynomial maps that preserve the origin are roots of powerseries. We study the one-dimensional case in greater depth.

متن کامل

Embeddings of rearrangement invariant spaces that are not strictly singular

We give partial answers to the following conjecture: the natural embedding of a rearrangement invariant space E into L1([0, 1]) is strictly singular if and only if G does not embed into E continuously, where G is the closure of the simple functions in the Orlicz space LΦ with Φ(x) = exp(x 2) − 1. In this paper we ask the following question. Given a rearrangement invariant space E on [0, 1], whe...

متن کامل

Embeddings of Rearrangement Invariant Spaces That Are Not Strictly Singular

We give partial answers to the following conjecture: the natural embedding of a rearrangement invariant space E into L1 ((0; 1]) is strictly singular if and only if G does not embed into E continuously, where G is the closure of the simple functions in the Orlicz space L with (x) = exp(x 2) ? 1. In this paper we ask the following question. Given a rearrangement invariant space E on 0; 1], when ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 2008

ISSN: 0075-4102,1435-5345

DOI: 10.1515/crelle.2008.029